Extending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right-hand sides
نویسندگان
چکیده
The technique that was used to build the eigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similarly to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of the BiCG residuals while simultaneously solving a linear system with that matrix. For a system with multiple right-hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first few systems and then uses the computed eigenvectors to deflate BiCGStab for the remaining systems. Our experiments on various test problems, including Lattice QCD, show the remarkable ability of eigBiCG to compute spectral approximations with accuracy comparable to that of the unrestarted, nonsymmetric Lanczos. Furthermore, our incremental eigBiCG followed by appropriately restarted and deflated BiCGStab provides a competitive method for systems with multiple right-hand sides.
منابع مشابه
Deflation for inversion with multiple right-hand sides in QCD
Most calculations in lattice Quantum Chromodynamics (QCD) involve the solution of a series of linear systems of equations with exceedingly large matrices and a large number of right hand sides. Iterative methods for these problems can be sped up significantly if we deflate approximations of appropriate invariant spaces from the initial guesses. Recently we have developed eigCG, a modification o...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملRestarting the Nonsymmetric Lanczos Algorithm for Eigenvalues and Linear Equations Including Multiple Right-Hand Sides
A restarted nonsymmetric Lanczos algorithm is given for computing eigenvalues and both right and left eigenvectors. The restarting limits the storage so that finding eigenvectors is practical. Restarting also makes it possible to deal with roundoff error in new ways. We give a scheme for avoiding near-breakdown and discuss maintaining biorthogonality. A system of linear equations can be solved ...
متن کاملRestarting the Nonsymmetric Lanczos Algorithm
A restarted nonsymmetric Lanczos algorithm is given for computing eigenvalus and both right and left eigenvectors. The restarting limits the storage so that finding eigenvectors is practical. Restarting also makes it possible to deal with roundoff error in new ways. We give a scheme for avoiding near-breakdown and discuss maintaining biorthogonality. A system of linear equations can be solved s...
متن کاملTwo Algorithms for Symmetric Linear Systems with Multiple Right-hand Sides
In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deeation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saun-ders' MINRES method for iterative solution of sym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 21 شماره
صفحات -
تاریخ انتشار 2014